小学教案四年级数学
小学教案四年级数学要怎么写,才更标准规范?根据多年的文秘写作经验,参考优秀的小学教案四年级数学样本能让你事半功倍,下面分享【小学教案四年级数学(通用7篇)】,供你选择借鉴。
小学教案四年级数学篇1
教学目标:
1.让学生进一步认识图形的平移,能在方格纸上把简单图形先沿水平或竖直方向平移,再沿竖直或水平方向平移。
2.让学生进一步积累平移的学习经验,更充分地感受观察、操作、实验、探索等活动本身的独特价值,增强对数学的好奇心。
3.让学生在认识平移的过程中,产生对图形变换的兴趣。
教学重、难点:
本节课主要来学习图形的平移,理解平移的含义,能够判断一个图形是由原始图形经过怎样的平移得到的,能够解决相关的实际问题。
教学过程:
一、感受平移
今天早上,同学们是怎样到校的?(骑车、走路)骑车、走路都是运动,在我们的生活中还有许多物体也是运动的,你们愿意看一看吗?
出示汽车图片,请你说一说汽车是怎样运动的?
出示电梯图片,请你说一说电梯是怎样运动的?
出示蝴蝶图片展开,请你说一说蝴蝶图片展开是怎样运动的?
这些图形有什么共同的特征,这样的运动你能给它起个名字吗?
好,就以大家说的来命名(板书课题:图形的平移)
在三年级的学习中,我们已经知道了图形的平移是图形上所有的点沿着平行的方向等距离移动。平移有两个要素,一个是方向,一个是距离。平移不改变图形的形状、大小,只改变它的位置。(板书:形状、大小、不变,位置、变了。)
二、怎样平移
多媒体课件出示:小亭子做的是什么运动?(平移)
你能把小亭子从左上方平移到右下方吗?
先回忆我们过去学习过的平移方法,看他先向什么方向平移了几个格子,又向什么方向移动了几个格子,可以把移动的过程记录下来,尝试着在方格纸上画出来,再在小组里交流你的想法。
学生独立思考,尝试平移。(教师巡视,对有困难的学生给以指点和帮助)
小组交流
反馈汇报
怎样才能把小亭子从左上方平移到右下方?
小亭子先向右平移6格,再向下平移4格
小亭子先向下平移4格,再向右平移6格。
小亭子向右下平移,斜着过去。
电脑演示三种方法
指导画法,选择一种方法,投影学生的作品,让学生边指边说是怎样平移的?
归纳提炼:学生自由发言,再次电脑演示,及时小结。
选择方法一:先确定几个关键点(图中三角形的顶点和正方形的四个顶点),接着把这几个点分别向右平移6格,再连成图形,这是沿水平方向平移,最后沿竖直方向,用以上方法把图形向下平移4格。
三、练习平移
1.判断平移的方向和距离。
(1)出示小船图,谈话:仔细观察小船是怎样平移的,并用手指出小船的起始位置和平移后到达的'位置,看一看先向哪边平移了几格?再向哪边平移了几格。请你先在书上数一数,填一填。
你是怎么数的?(抓住一个点来看,数一数这个点到它对应点平移了几格,我们就可以知道小船平移了几格)
(2)电灯平移图,同上教学
(3)提问:这两幅图还可以怎样平移到达现在的位置?(学生自由发言,教师鼓励学生说出不同的平移方法)
2.设计运用,引入生活。
(1)出示梯形图:按要求移动。
(2)出示船图:如果你现在是一名轮船的调度员,你的任务就是应客户要求,调度车辆到达指定地点,那么,你能用哪些不同的平移方法做到呢?试一试吧!
要求:为自己任选一题独立完成,然后在小组中交流,小组长负责记录不同的方法,最后在全班交流。
3画平移后的图形。
(1)谈话:刚才我们已经学会看一个图形平移的方向和距离了,如果请你画出一个图形平移后的图形,可以吗?请注意,为了清楚地表示平移的结果,我们可以把平移过程中画出的图形用虚线画,平移的最终结果用实线画。
(2)学生独立完成,教师巡视,对有困难的学生加以指导。
(3)投影学生作品,交流平移的过程与方法。
(4)转换练习。
教师出示一把直角三角尺,并投影出示格子纸。
把三角尺向下平移5格再向左平移3格;
把三角尺先向右平移5格再向下平移3格;
个别学生上台按要求操作演示。(同桌练习,一人提要求,一人操作)
4体验平移的价值。
(1)出示两条直线,观察这两条直线,观察这两条直线,你发现了什么?(是平行线)
你怎么肯定这两条直线是互相平行的?有无办法验证?
(2)学生默读课本65页第3题,按书上办法操作。
(3)观察画出的两条直线,你发现了什么?你能说一说用直尺和三角尺画平行线的方法吗?
小结:把三角尺的一条直角边紧贴直尺,沿另一条直角边画一条直线,然后把三角尺沿着直尺平移,在沿三角尺的同一条直角边画直线。这样,先后画出的两条直线是互相平行的。
(4)学生尝试这种方法画平行线。鼓励学生可以画不同的一组平行线。教师巡视并帮助有困难的学生。
(5)你能用这种方法检验刚才观察的两条直线是否平行吗?
四.全课小结:
我们今天学习了什么内容?我们做了哪些事情?你对什么印象最深?从中,你明白了什么?
板书设计:图形的平移
形状、大小位置
平移不变变了
小学教案四年级数学篇2
教学内容:
神奇的计算工具
教学目标:
1、认识并会使用计算器
2、从身边算起,巩固计算器的使用方法。
3.适当进行环保教育
教学重点:
认识并熟练使用计算器。
教学难点:
熟练运用计算器。
教学过程:
一、引入。
1.同学们,你们知道远古时代,都有哪些计数或计算的工具么?
随着科学技术的发展,现在我们可以用哪些计算工具来进行计算?
2、问:在日常生活中,你在哪见过计算器?
3、小结:可见,在日常生活中计算器已经被广泛的使用了,那么,这节课我们就来了解一下计算器这个神奇的计算工具,并利用它解决一些生活中的问题。板题:神奇的计算工具。
二、展开。
1、认识计算器
同学们每人都带来了计算器,各种品牌的计算器,大小、功能都不太一样,我们来看一看,这个计算器的功能比较复杂,而这一个比较简单。今天我们就来认识数字区、加减乘除符号区和开关键、归零键这些基本的按键,其它按键以后再学习。今天我就想请你以推销员的身份来介绍你的计算器。试想,如果你是这个品牌计算器的推销员,你应如何介绍这个计算器的基本按键和使用方法,使用方法可以举一个例子计算演示。
比一比谁是秀的推销员,优秀推销员的标准为
(1)声音洪亮,语言能够表述清楚
(2)能够有条理的进行介绍,两人一小组试推销,互相取长补短。
2、比赛
作为一个优秀的销售人员不但要有非常棒的口才,还要有良好的计算功底,接下来我们将进行一场计算比赛,请听清要求,女生先用口算进行计算,男生用计算器进行计算,请在规定的时间内完成老师指定的题目,并把答案记录在口算卡上,算完后马上起立,比一比口算速度快,还是计算器的速度快?
出示
第一组:15+23=
82-62=
1000×5=
第二组:7861+3492=
35×21=
6300-2145=
师问:那么,什么样的计算用口算比较快,什么样的计算用计算器比较快呢?
总结:并不是所有的计算都用计算器比较快,对于比较简单的算式来说用口算更方便、更准确
请你用合适的计算方式来计算下题:
1002-63
4698+1836
0.5×60
1596÷38
汇报:每道题分别用哪种计算方式来算的?结果是多少?
不要所有题都依赖于计算器,同学们还是要勤于思考,善于动脑,这样大脑才能越来越灵活。3.环保问题。
在我们身边存在着许多数学问题,这些问题的数据是“不算不知道,一算吓一跳。”
出示:“据统计,一个没有关紧的水龙头,每天大约浪费16千克的水。照这样计算一年(按365天计算),要浪费多少千克的水?”
现在我们把这些水利用起来:“把这些水装在饮水桶中(每桶水约重20千克),大约能装多少桶?”
你家每月要喝几桶水?
“算算这些水够你家喝几个月?合多少年?”
合作要求
(1)先想一想,再在本上试着进行计算
(2)如果有困难,四个人可以进行讨论,最后由一人进行汇报。
看到这个数字你有什么感想?
教师:看似不经意的一滴滴水,积累起来就够一家子喝上几年的。通过这组数据的计算,你有什么感想吗?
小结:有句宣传词这么说:“当世界上只剩下最后一滴水的时候,那就是自己的眼泪!”想想,那将是多么可怕的事。通过计算器的计算,使我们懂得了要保护好人类赖以生存的水资源。
3、身边算起。
那么你最想用它来算算身边的什么呢?
课前以同桌四人为一组,调查了一些数据。现在就来汇报一下你们最想算什么。(汇报)
四人一组,用计算器来算一算你最想知道的数据吧!
问:哪一组愿意来说一说你们计算的情况?
一人说题目,一人汇报,一人补充。
三、小结
通过今天这节课,你学到了什么?
四、总结
计算器发展到今天,还有许多不足的地方,老师希望你们读好今日书,成为明日之才,去更好的完善计算器的功能。
小学教案四年级数学篇3
教学内容:
亿以上数的改写(教科书第20页例3,21页例4)。
教学目标:
(一)知识与技能
1、理解掌握将整亿数改写成以“亿”为单位的数的方法,并能正确地改写。
2、理解、掌握将非整亿数用“四舍五入”法改写成以“亿”作单位的数,并能正确地改写。
3、进一步理解“改写”和“略写”的含义。
(二)过程与方法引导学生运用已有知识经验,通过交流优化写法,正确改写。
(三)情感、态度与价值观让学生在活动中积极地探索并理解数学方法,激发学生学习的热情。
教学重点:
整亿数的改写,非整亿数的略写。
教学难点:
正确使用“四舍五入”法。
教学准备:
多媒体。
教学过程:
一、复习铺垫
1、把下面各数改写成以“万”作单位的数。
25000020000000581200000
(1)由学生独立完成。展示个别学生的改写结果。
(2)你是怎样改写的?这样改写,原数的大小变了吗?
引导回顾
①先找准“万”位。
②看千位上的数,以五为准,按照“四舍五入”原则改写。
③注意“≈”号的使用。
④最后添上“万”字。
二、探究新知
学习亿以上数的改写。
1、出示例3:(1)200000000=()亿
①学生尝试独立完成。
②展示、交流改写方法。
③归纳方法:改写成以“亿”作单位的数和改写成以“万”作单位的数的方法相类似。
练习:1000000000=()亿530500000000=()亿
小结:改写整亿数,先分级,再找到亿位,然后把亿位后面的8个零去掉,改成“亿”字。
(2)完成20页做一做第3题。
2、学习例4
1034500000≈()亿
①学生尝试改写。
②展示、交流改写方法。
③为什么要用“≈”
3、非整亿数的改写方法
(1)分级,找到亿位上的数。
(2)看亿位右边的数是比5小,还是
大于或等于5,进行四舍五入。
(3)去掉尾数,写上“亿”字,写上约等号。
4、把9876540000用“四舍五入”法省略亿位后面的尾数。
①学生独立完成。
②教师巡视、指导。
③展示交流。
三、巩固练习
1、教材第21页的“做一做”。
2、自主设计练习。
四、课堂总结
今天我们一起研究了改写和省略,对于今天的学习,你有什么想法?
五、作业
完成练习册11、12页。
板书设计:
亿以上数的改写
整亿数的改写:先分级,再找到亿位,然后把亿位后面的8个零去掉,改成“亿”字。
非整亿数的改写方法
(1)分级,找到亿位上的数。
(2)看亿位右边的数是比5小,还是大于或等于5,进行四舍五入。
(3)去掉尾数,写上“亿”字,写上约等号。
小学教案四年级数学篇4
教学目标:
1、发现、理解和掌握乘法分配律;
2、能用准确的语言表述乘法的分配律,并能初步运用乘法的分配律;
3、培养学生观察、归纳、概括等初步的逻辑思维能力。
4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探究、自己得出结论的学习意识。
教学重点:乘法分配律的意义及其应用。
教学难点:应用乘法分配律进行简便计算。
教学过程:
一、创设情境,激发兴趣:
(请两位同学到前面)假如20年后,二位在机场见到了我,你们会怎么样?
生:(齐)高兴激动。
生1::打个招呼,宋老师好。
生2:宋老师好!
师:我把这个过程在黑板上用简笔画画出来,提问是有两个宋老师吗?
生:不是,是分别握手。
生:乘法分配律(小声地)
(设计意图:创设情境,吸引学生注意力,为学习新课埋下伏笔,激发学生的求知欲望。)
二、自主探索,合作交流
师:今天能和大家一起学习,老师非常高兴。现在正是阳春三月,植树造林、绿化环境的好季节。
1、引入主题图(:植树情景及信息):每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动?
(1)阅读理解:让学生充分表达自己知道了什么。
生1:已知每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动。
生2:每个小组共有6人。
(2)分析解答:
学生汇报自己的解法,引导学生说明不同算法的理由。
板书:(4+2)×254×25+2×25
2.两个算式的结果怎样?用什么符号连接?生读等式
板书:(4+2)×25=4×25+2×25
生读算式(4+2)×25=4×25+2×25
3、春季运动会李老师欲订购9套运动服,上衣每件58元,裤子每件42元,一共需要都少钱?
口头列式,得出(58+42)×9=9×58+9×42(生读等式)
4、观察这两组算式,请你写出一些类似的式子.
每个学生都能正确写出几组算式,有很多学生已经用字母或图形表示的。(3个学生写错,2名学生自己改过来了)
投影展示
生1:(1+2)×3=1×3+2×3
(3+2)×4=4×3+2×4
(10+2)×5=10×5+2×5
(6+4)×5=6×5+4×5
生2:(4×2)×3=4×3+2×3
生3:他的算式是错的,括号里应该是两数之和。
生4:(+)×=×+×
(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
师;尝试用文字总结发现的规律
生:两个数相加,乘第三个数,可以先把第三个数分别与前两个数相乘,再相加。、、、、
等号两边的算式有什么相同和不同?
5、集体归纳。
抓住:两个数和、分别相乘
小结:这个规律是具有普遍性的。你们发现的这个规律就是我们的数学前辈们早已研究得出的“乘法分配律”。(板书课题:乘法分配律)也就是---(电脑出示下面的文字)
两个数的和与一个数相乘,可以把这两个数分别和这个数相乘,再把两个积相加,结果不变。
6、讨论记忆乘法分配律的方法。
师:乘法分配律与乘法交换律、结合律不同,大家讨论一下记忆乘法分配律的方法。
生1:就像课前老师与两位同学见面一样,老师和两位同学分别握手再求和。
生2:括号外面的字母c就像我自己,放学回来,站在门外,爸爸和妈妈在房子里,我进门后先和爸爸打招呼,再和妈妈打招呼,最后一家人围坐在一起。
、、、、、
学生的方法很多。
(设计意图:通过自己模仿写算式和寻找记忆方法的环节,让学生体会理解分配律的本质特点,激发学习兴趣)
三、巩固新知,尝试练习
1、数学王国正在举行有奖竞猜的活动,你能拿到那些精美的奖品吗?
(12+200)×3=□×3+□×3
15×(40+2)=□×40+□×2
2、数学游戏:找朋友
(1)找出得数相等的两个算式,(将算式卡片展示在黑板上)
(设计意图:一共出示了四组算式,让学生在辨别正误的同时,进一步巩固所学知识,提高学习兴趣)
提问:22×7+18和(22+18)×7是朋友吗?如果要让它们成为朋友,该怎么改?
(2)整理卡片,分成两组
甲组乙组
①100×31+2×31①(100+2)×31
②9×(37+63)②9×37+9×63
③(22+18)×7③22×7+18×7
分组计算比赛:女生计算甲组的三道题,男生计算乙组的三道题.看谁算的快。
(设计意图:制造冲突,引出认知矛盾)
男同学这组为什么算的慢?你们认为这样比赛公平吗?你们有没有办法很快算出得数?(引导学生思考得出简便计算的方法:把乙组题转化成乘法分配律的另一种形式,使计算简便。)
小结:能口算,并且能凑整十、整百数,算起来比较简便。
利用乘法分配律可以使一些计算简便。
(这一环节进行充分运用,渗透简便运算的意识)
四、运用规律,内化新知
(8+4)×25=34×72+34×28=
先观察,说一说算式特点,再尝试计算、指名板演、全班交流
(设计意图:前后呼应,既显示了内容的完整性,又激发了学生的探索欲望,增强了学习的自信心。)
五、课堂总结与评价:
用自己的话说一说什么是乘法分配律?
(设计意图:培养学生的归纳总结意识和数学语言的表达能力。)
板书设计:
乘法分配律
(4+2)×25=4×25+2×25
(a+b)×c=a×c+b×c
甲组乙组
①100×31+2×31①(100+2)×31
②9×(37+63)②9×37+9×63
③(88+12)×7③88×7+12×7
小学教案四年级数学篇5
教学目标:
1、让学生理解和掌握用字母表示数的方法,知道含有字母的式子既可以表示数、数量,也可以表示数量关系。
2、会用字母表示数量关系,能求含有字母的式子的值。
3、让学生初步感受用字母表示数的作用和优点,渗透符号化思想。
教学重点:会用字母表示数量关系
教学难点:理解含有字母的式子的意义
教学过程:
一、创设情境,激发探究欲望:
1、儿歌引入:
学生初步体会字母具有的概括性。
同学们都熟悉这样一首儿歌吧:
1只青蛙1张嘴,
2只青蛙2张嘴,
3只青蛙3张嘴,
…
和同学们交流一下。你能用一句话表示这首儿歌吗?
学生汇报:
二、联系生活实际,体会字母表示数的必要性和意义:
1、妈妈和淘气比年龄:
学生初步体会妈妈年龄和淘气年龄的关系:
淘气1岁,妈妈比你大26岁,妈妈的年龄怎么表示:
淘气2岁,妈妈比你大26岁,妈妈的年龄怎么表示:
…
如果淘气的年龄为a岁,那么妈妈的年龄是多少岁呢?怎么表示:
2、摆图形:
学生体会字母表示数的必要性和意义:
出示图形:摆一个三角形需要3根小棒,摆2个这样的三角形需要多少根小棒?摆10个呢?摆a个呢?
生发现寻找规律能帮助我们更快地解决问题,从而产生寻求规律的必要性。为了简洁、清晰地表示规律,需要引入字母,用a代表摆任意的三角形。
生列式:师强调a×3的写法。
三、巩固练习,强化新知:
1、练习:试一试:
第一题:回到刚开始的儿歌,老师再添两句。
你能用一句话说一说这首儿歌吗?为什么?
第二题:哈雷彗星这道题是难点,学生容易错,让学生说出为什么。
用字母既可以表示数、又可以表示两个数的关系,还可以表示什么?(计算公式)你能举例说明吗?
练习第三题:
还可以表示什么?(运算定律)你能举例说明吗?
练习第四题:
四、总结:揭示课题,用字母表示数有什么好处吗?联系生活实际说一说在什么地方用到用字母表示数。
小学教案四年级数学篇6
教学目标:
1、认知目标:知道简便运算的基本思想方法是凑整,利用加法运算定律可使运算简便。
2、技能目标:会正确运用加法运算律,对某些算式进行简便计算。
3、情感目标:接纳并乐于运用运算律进行简便计算,通过综合运用运算定律,使学生感到自由。
教学准备:
教学过程:
一、故事导入:
数学家高斯小时候,老师出了这样的一道题目:l+2+3+…+99+100=()。同学们都埋头算了起来,高斯却没有,他仔细地观察了算式,认真地想了想,马上报出得数。他是怎么想的?你能算吗?为了彻底搞清这个问题,让我们从考察比较简单的问题人手。
二、新课教学:
1、教学例3:254+687+313
(1)师生竞赛,看谁算得快。
(2)通过比赛,请速度快的学生,说说计算过程。
可能有两种情况:
a、不用简便的方法计算,只是学生计算能力强、速度快。
问:有更简单的方法吗?
b.生答:254+687+313=254+(687+313)
问:你是怎样想到的?这样算为什么会比较快?
(1)揭示课题:
(2)学生小结:把能凑成整千、整百的数结合起来先算,可使运算简便。(板书:关键“凑整”方法:“用运算定律”)
(3)基本运用:用简便方法计算。
718+57+8257+62+138
让学生独立完成,说说为什么这样计算?
A、生共同归纳方法:碰到一个加法算式,先看一有没有能“凑整”的数,如有,再运用——加法运算律进行简便计算。
①观察——有没有能凑整的`数。
②如无,按顺序计算或竖式计算。如有,用加法运算律计算。
2、凑整训练:
决定是否运用运算律,关键看题中有没有可凑整的数。因此要正确迅速地作出决定,必须加快我们分辨凑整数的速度。
把左边和右边的数相加的和是整百、整千的用线连起来。
36283
1597253。
47164
317403
3、教学例4:27+56+173+44
(1)学生进行尝试练习。
(2)反馈——投影出示整个计算过程。
(3)请同学们当小老师,说说为什么可这样做?根据什么?
(4)小结:先凑整,再简算。
凑整中同时使用交换律、结合律,我们可以把加法式中的数任意调换位置,也可以按需要把任意两个数放在一起加。
三、自主训练
1、怎样简便怎样算。
77+255+45+23273+15+185+18
68+74+33+67125+21+33+48
(1)分组完成(每组一张玻璃片,中等生解答,投影校对)。
(2)说说为什么可以这样做?依据是什么?(指名说、同桌互说)
2、看算式直接写出得数:“练一练”3。
口答得数,说说依据和方法。
①发展训练:老师出给高斯的题目怎样算?
1+2+3+4+5+6+7……+99+100
=(1+100)+(2+99)+…十(50+51)
=101×50
=5050
四、课堂小结:
1、加法交换律、加法结合律在计算中有什么作用?关键是什么?
2、综合运用计算律进行计算,你有何感觉?
注意:当能熟练运用时,简算过程可写可不写。
五、课堂作业:《作业本》
小学教案四年级数学篇7
教学内容
人教版小学数学四年级下册P17—18。
学习目标
1.理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2.经历探索加法交换律和加法结合律的过程,培养学生的概括推理能力。
3.获得成功的体验,增强对数学的兴趣和信心,形成独立思考和探究问题的意识习惯。
学习重点:
理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
学习难点:
经历探索加法交换律和加法结合律的过程,发现并概括出运算律。
学习准备
课件、学习单
学习过程
一、创设情境,提出问题。
1.师:暑假是外出旅游的大好时节,好多人都旅游去了,当然李叔叔也不例外,看他是怎么去的?课件出示:
生:骑自行车。
师:你们看的真准,再仔细看看,你从图中还了解到了哪些信息?
生1:李叔叔准备骑车旅行一周。
生2:李叔叔上午骑了40km,下午骑了56km。
2.师:根据了解到的信息你能提出什么问题?
生1:李叔叔今天一共骑了多少千米?
生2:李叔叔今天上午比下午少骑多少千米?
二.合作探究,解决问题。
(一)探究加法交换律
1.列式计算
师:今天我们选取“李叔叔今天一共骑了多少千米”来做我们的学习材料,要解决这个问题我们应该怎么列式?
生1:40+56(板书)
师:还可以怎样列式?
生2:56+40(板书)
师:它们之间可用什么符号连接?
生:等号。(师板书等号)
师:为什么可以用等号连接?
生1:因为它们的和都是96千米。
生2:因为它们都是求的李叔叔一天行的总路程。
2.课件出示:
123+377Ο377+123
1124+76Ο76+1124
师:这两道题,它们的算式之间的能用等号相连吗?请你算一算!
生:能
师:为什么?
生:因为它们的和都相等。
师板书:
3.师:观察这三个等式,你发现了什么吗?
生:两个数相加,交换加数的位置,和不变。
师:从刚才的发现中,你们会猜想到什么呢?
生:是否所有的加法算式两个加数交换位置和不变呢?
(板书:两个数相加,交换加数的位置,和不变?)
4.师:口说无凭,你打算怎样验证咱们的猜想?
生:我们可以再举几个例子来验证一下。
师:那请大家拿出本子来,举几个这样例子来验证看看!
(生独立举例验证)
5.师:谁来上台说说你是怎么举例验证的?
生:(百以内的加法、多位数的加法、小数加法……)
师:通过刚才这两位同学的举例,都能证明我们的发现是正确的。谁有没有发现交换加数位置和不相等的情况吗?
生:没有。
师:也就是说,我们举不出反例,那证明我们该刚才的发现是正确。
师:谁能够再一次总结一下我们刚才发现的这个规律?
生:两个数相加,交换加数的位置,和不变。
师:旁边的问号是不是可以擦掉了?!
师:这个规律,数学家们给它起了一个名字,叫做“加法交换律”
(板书加法交换律)
6.师:刚才同学们举了那么多的例子,这样的例子能举完吗?
生:举不完。
师:是啊,像这样的等式我们能写出很多很多来。
(师边说便在等式的下面板书“……”)
师:既然像这样的等式写不完,你能否开动你的脑筋,想办法用一个算式表示出所有的等式吗?试一试,把你的想法在本子上写出来。
(学生尝试)
7.师:谁来说一说你是用一个怎样的算式表示加法交换律的?
生1:甲数+乙数=乙数+甲数。
生2:△+□=□+△
生3:a+b=b+a
师:这三位同学的方法能表示出所有的情况吗?
生:能。
师:这三种方法,你更欣赏哪一种?
生:第三种。
师:说说你的理由。
生:因为第三种更方便、更简洁。
师:其实咱们的数学家想到的`式子,跟生3的想法不谋而合,也是a+b=b+a。
(师板书a+b=b+a)
师:你觉得a和b可以表示哪些数?
8.师:同学们现在回想一下,我们是怎样探索出“加法交换律”的,同桌互相交流一下。
生1:我们是先观察发现,再举例验证,最后是总结规律。
师:很简单明了,还有谁来说一说?
生2:我们第一步是观察发现,我观察这三个等式,发现了任意两个数相加,它们的和不变,第二步是举例验证,我们举了好多例子,证明我们是正确的,最后一步是总结规律,总结的规律是“两个数相加,交换加数的位置,和不变”。
师:说的好不好?把掌声送给他!
(板书:观察发现→举例验证→总结规律。)
9.师:我们刚才是通过观察发现,然后是举例验证,再总结规律,这是一种非常好的学习方法。刚才大家经历了一次像数学家一样做数学的过程,那你能不能用这种学习方法去探索其他的运算定律呢?
生:能。
(二)探究加法结合律
1.师:现在请大家自学<学习单一》,自学之前老师给大家提供了一个学习锦囊,谁愿意大声读一遍?
生:
一.观察发现。
仔细算出每一组题的结果,你发现了什么?
二.举例验证。
你能再举出几组这样的例子吗?
三.总结规律。
你能用符号表示这个运算定律吗?
2.师:下面就请大家按照自学锦囊上的提示自学,开始。
(生独立完成)
师:完成的同学同桌交流一下。
3.师:都完成好了吗?谁愿意到前面分享一下你的自学收获?
生:我发现第一组算式都等于288,第二组算式都等于273,第三组算式都等于507,它们都可以用等号来连接。
师:每一组题的两道算式的计算方法有什么不一样吗?
生1:前一道算式都是先算前两个数的和,再和第三个数相加,后一道都是先算后两个数的和,再和第一个数相加。
师:刚才这位同学分享了这么多自学的收获,那你还发现了什么?还其他的发现吗?
生:我还发现这三组题,后面的题都改变了运算顺序。
师:运算顺序改变了,那么什么没有变?
生:和不变。
师:还有没有什么不变?
生:数字的位置没变,只是运算顺序变了。
4.师:刚才通过这三组算式发现了一个非常重要的规律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。那这个规律对不对还需要我们怎么样?
生:举例验证。
师:那谁来说一说你举的例子?好,你来!
生1:(24+76)+28=24+(76+28)(师板书)
师:谁再来分享一下你举的例子?
生2(8+7)+3=8+(7+3)
师:谁再来举一个?
生3:(325+178)+22=325+(178+22),他们都等于525.
5.师:谢谢大家的分享。刚才,我们大家进行了举例验证,你们验证我们发现的规律对不对?
生:对!
师:有没有举出反例的?
生:没有。
师:那由此可以说明,我们该发的规律是……
生:正确的!
师:下面请同学们把我们发现的规律齐读一边,预备,起!
生::三个数相加,先把前两个数相加,或者先把后两个数相加,和不变
师:刚才发现这个重要的规律,我们把它叫做加法结合律。
(板书:加法结合律)
6.师:这是我们发的第二个运算定律,那你能用符号表示加法结合律吗?
生:(a+b)+c=a+(b+c)。
7.师:今天这节课,我们采用观察发现、猜想验证、总结规律的学习方法,发现了两种的加法运算定律,现在你还有什么不懂得、想提出来供大家研究吗?
生:加法交换律和加法结合律有什么相同点和不同点?
师:这个问题很有研究的价值,下面就请大家小组内交流研究,开始!
(生小组交流,师巡视)
师:哪一位同学到前面来分享一下你们讨论的结果?
生1:我们小组发现的它们的相同点是都是加法,和不变;不同点是加法交换律的加数是两个数,加法结合律的加数是三个数。加法交换律是数字的位置变了,加法结合律是运算顺序变了。
师:你们同意吗?还有和这一组不一样的吗?
师:好的,看来其他组的同学的发现同他们是一样的,我们班的同学观察力和思考力非常强,那下面,我们就运用我们学会的本领来练一练,解决生活中的实际问题!
三、巩固练习,拓展提高。
1.下列等式各运用了什么运算定律?
2.你能()中填上适当的数吗?
3.今天我和妈妈一起逛超市,看到体育用品柜台有下列物品:
4.小明在上课的时候,老师出了一道这样的题目:
四.课堂总结。
1.本节课你什么收获?还有什么疑问?
2.师:同学们今天的表现非常出色,用自己善于发现的眼睛和聪明的头脑找到了加法算式中的规律,认识并理解了加法交换律和加法结合律,并能初步应用。你看,数学家能总结出来的运算定律我们也能总结出来,我相信只要我们在以后的学习中勤动脑、多动手,一定可以把数学学得更棒!
五.板书设计